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Summary 
 
We propose a new approach to solve cycle skipping issues in 
full-waveform inversion (FWI) by regenerating low-
frequency first arrivals. By using the regenerated first arrivals 
as the input data for the low-frequency FWI steps, we can 
provide an improved starting velocity model for the 
subsequent FWI iterations using the original band-limited 
data. Furthermore, the quality-control (QC) work of the first-
break times can be done easily by comparing the regenerated 
first arrivals with the original ones. The method is robust 
since the regenerated first arrivals are just the synthetic data 
with full-frequency bandwidth and correct time shifts. 
Without complicated theory, only one conventional time-
domain FWI algorithm is needed for both building the starting 
model, and final high-resolution velocity reconstruction. 
 
Introduction 
 
FWI has emerged as a very promising tool for building 
detailed seismic velocity models, which enhances the overall 
subsurface imaging quality. Conventional FWI updates the 
velocity model iteratively by minimizing the least-squares 
(LS) difference between the recorded and the predicted data. 
However, one fundamental challenge of conventional FWI is 
the local minimum issue caused by the cycle skipping 
between the input and predicted data.  
 
To overcome this challenge, FWI requires sufficiently low 
frequencies. However, original seismic datasets from the field 
are always band-limited, thus very low frequencies (e.g., < 3 
Hz) are usually unavailable. To overcome the cycle skipping 
in higher frequency bands, Shin and Cha (2008) proposed to 
extract low-wavenumber components from high-frequency 
seismic data, by distorting frequency information using 
Laplace-domain transformation. Hu (2014) also proposed a 
beat tone method. The distortions of frequency information 
may bring some potential risks in inversion, as discussed by 
Shin and Cha (2008). Most importantly, their schemes are 
based on the frequency-domain or Laplace-domain modeling, 
which may not be suitable for the large-scale computation 
requirements in production, mainly using parallelized time-
domain modeling engines. 
 
Without low frequencies, a highly accurate starting model is 
necessary for the success of FWI. This model is often built by 
first-arrival traveltime tomography (FATT) as discussed by 
Ravaut et al. (2004), and Xu and Greenhalgh (2010).  
Because the ray tracing method used in FATT is based on 
high-frequency approximations of the wavefield propagation, 
FATT has some inherent drawbacks as: (1) it may fail in low-

velocity shadow zones, or highly varying velocity zones; (2) it 
has resolution limitation depending on shot/receiver intervals, 
grid size, and numbers of rays etc. To substitute ray tracing 
with full-wavefield modeling in tomography, some 
researchers, including Luo and Schuster (1991) and Choi and 
Alkhalifah, (2011) integrated the first-break traveltime 
information into the FWI adjoint-state framework. The time 
differences between the recorded and predicted data can be 
measured using a cross correlation function as discussed by 
Luo and Schuster (1991).  However, the accuracy of the time 
difference estimation may vary from trace to trace due to 
changes in signal-to-noise ratio (SNR).  These changes make 
it difficult to adjust the estimation coefficients or control the 
quality of the estimated times at each inversion iteration. In a 
different way, Choi and Tariq (2011) extracted the unwrapped 
phases to represent for the first break times in the frequency 
domain. Nevertheless, their algorithm needs explicit 
calculation of the imaginary part of the complex-valued 
frequency wavefield and its derivative with respect to each 
frequency. As a result, it is not suitable for time domain codes 
used for large-scale computations in production. 
 
In this paper, we propose a new method to regenerate first-
arrival waveforms with a full frequency band and with the 
same arrival times as the recorded ones.  By using this 
synthetic data generated on a rough starting velocity model, 
the travel time information for the first arrivals in the original 
recorded data is transformed into the low-frequency phase 
information in the regenerated data.  Thus, by using the low 
frequencies of the regenerated data for the initial FWI 
iterations, we can provide a better starting velocity model that 
will avoid cycle skipping for the subsequent FWI using the 
band-limited original data. 
 
Theory 
 
To regenerate a new dataset with low frequency information, 
we assume that the source wavelet is already known or 
estimated. We then establish a rough starting velocity model 
by using some simple preprocessing steps such as stack 
velocity analysis or well-log extrapolation.  The synthetic 
dataset is generated using the same geometry as the original 
dataset; however the synthetic wavefields may have large 
amplitude and phase differences from the original data, if the 
initial model is not close to the true one.  Phase differences 
for the first arrivals represent mainly the time shifts between 
the original and synthetic data. These time shifts can be 
estimated by a first-break time picking or by using a cross-
correlation method. Once the time shifts are estimated, a new 
synthetic dataset can be regenerated by time-windowing and 
shifting the modeled first arrivals to the same times as the 
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original first arrivals.  Then, by comparing the original and 
regenerated first arrivals, we can easily quality-control (QC) 
the estimated time shifts, and either adjust the estimation 
parameters and redo the estimation, or eliminate the ‘bad’ 
estimated traces before inversion. 
 
Since the same modeling engine is used for the regenerated 
dataset and predicted dataset in the initial inversion, the 
regenerated dataset is considered as a ‘clean’ dataset, with a 
known source wavelet, a full-frequency band, and no noise. 
By using the frequency bands in the regenerated dataset that 
are low enough to avoid cycle skipping, FWI generates a 
better starting velocity model by matching the time/phase 
differences between the regenerated and predicted first 
arrivals. Using the improved starting model to avoid cycle 
skipping, further FWI is conducted on the full wavefields of 
the original band-limited recorded dataset to reconstruct the 
high-resolution subsurface velocity models.   
 
The workflow to implement the proposed method into FWI is 

1) Model data using a rough starting velocity model; 
2) Estimate the time shifts between the original and 

synthetic first arrivals by using a first-break time 
picking or a cross correlation method; 

3) Time-shift the first arrivals of the synthetic dataset 
to the same locations as those of the original 
dataset; 

4) Improve the starting velocity model by using low-
frequency bands of the time-shifted synthetic first 
arrivals; 

5) Further improve the starting velocity model by 
using the original first-arrivals (optional); 

6) Conduct the final high-resolution multi-stage FWI 
using the full wavefields of the original dataset and 
the improved starting velocity model. 

 
Algorithm 
 
The modeling engine of our FWI algorithm is built with a 
high-precision, 2D/3D, isotropic or anisotropic, variable-
density, acoustic-wave, finite-difference (FD)/pseudo spectral 
(PS) modeling code.  The algorithm is parallelized with MPI 
to distribute shot simulations over cluster nodes, and is 
optimized at each node using shared-memory OpenMP. The 
order of the FD operator is 4 for time stepping, and 14 for the 
spatial grid.  The top boundary of the modeling grid is treated 
as a free surface for the numerical tests, while at the other 
boundaries we implement absorbing boundary conditions. 
 
The inversion scheme belongs to the conventional LS-FWI 
using the data residuals between the input and predicted data, 
and is implemented in the time domain. To reduce the 
amplitude mismatch and focus on the phase information, the 
amplitudes of the input data are normalized to the same level 
as those of the predicted data [as discussed by Warner 
(2014)]. In the inversion, the P-velocity is updated using the 

conjugate gradient method.  The density model can be fixed 
or updated along with the P-velocity, using various velocity-
density relations.  For the later tests, we updated the density 
along with the P-velocity using one of their empirical 
relations. Time windowing and low-pass filtering can be 
applied, and adjusted, during different inversion stages, to 
reduce the nonlinearity of the inversion.  
 
Examples 
 
In our first example, we started our testing using a synthetic 
dataset created to approximate original data from the field by 
adding strong noise into the low-frequency (0-5 Hz) band of 
the input shot gathers, thus making it unsuitable for low-
frequency FWI, and by adding lower levels of noise into the 
rest of the frequency band.  The amplitude spectra of the 
original synthetic data and noisy synthetic data are displayed 
in Figure 1. 

            
Figure 1:  Amplitude spectra for (a) original synthetic data, 
and (b) noisy input data 
 
The noisy synthetic data to be used as the input for later FWI 
tests is generated on a true acoustic Marmousi model, 
displayed in Figure 2(a).  This model is also used in other 
robust time-domain inversion papers:  Biondi and Almomin 
(2014); Warner (2014); Jiao et al., (2015).  We used a 1D 
profile velocity model as a very rough starting model for 
FWI, displayed in Figure 2(b).  We then ran conventional 
multi-stage FWI on the input data that lacked low frequencies 
(0-5 Hz), using the rough starting velocity model.  Figure 2(c) 
demonstrates that FWI iterations using the higher frequency 
bands of the original input data (0-6 Hz up to 0-30 Hz) failed 
to converge, due to noise in the low-frequency band. 
 
We then created a new synthetic dataset, using the rough 
starting velocity model in Figure 2(b). By time-windowing 
and applying a 0-6 Hz low-pass filter; we compared the first-
arrival time/phase differences between the noisy input data, 
displayed in Figure 3(a) and the new synthetic data, displayed 
in Figure 3(b). Within the lowest available frequency band 
(e.g., 0-6 Hz) for the input data, their phase differences are 
still over half of cycle in the far offsets. 
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Using the estimated differences between the first arrivals, we 
time shifted the synthetic events in Figure 3(b) to the same 
time locations as those of the noisy input data in Figure 3(a) 
and created a regenerated synthetic dataset, with first arrivals 
displayed in Figure 3(c).  The regenerated first arrivals carry 
the same, correct phase/time information as the input first 
arrivals displayed in Figure 3(a). 

 
Figure 2:  (a) True Marmousi model with noisy input data; (b) 
rough starting velocity model for FWI; (c) inversion result 
using a conventional LS FWI 

   
Figure 3:  First arrivals at frequencies 0-6 Hz for the (a) noisy 
input data, (b) synthetic data generated with the velocity 
model in Figure 2b, and (c) regenerated synthetic data 
 
After regenerating data with the full frequency band, any low 
frequency bands (e.g., 0-1.5 Hz) were then available for FWI, 
as displayed in Figure 4(b).  Comparatively, the noisy input 

data in the same frequency band (0-1.5 Hz), is full of noise, as 
displayed in Figure 4(a). 

                       
Figure 4:  Low pass filtered data (0-1.5 Hz) for the  (a) 
original, and (b) regenerated data 

To test our theory, we began by using the regenerated 
synthetic dataset to conduct a multi-stage inversion within 
very low frequency bands; 10 iterations in 0-1.5 Hz bands, 
and a successive 10 iterations in 0-4 Hz bands. The velocity 
resulting from this procedure, displayed in Figure 5(a), is 
improved by matching the phases of the regenerated data.  
 
We performed the inversion again, using the first improved 
starting model in Figure 5(a) and the first arrivals in 0-6 Hz 
frequency band from the original noisy data, depicted in 
Figure 3(a), to produce the second improved starting model 
displayed in Figure 5(b).   

 

 

 

 
Figure 5:  (a) the first improved starting model (0-4 Hz, 
regenerated data), (b) the second improved one (0-6 Hz, noisy 
input data), and (c) the final high-resolution result. 
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Since both the amplitude and phase information of the 
original first arrivals, depicted in Figure 3(a), are used in the 
inversion, Figure 5(b) has obvious higher resolution than 
Figure 5(a), which uses only the phase information of the 
regenerated data in the inversion. 
 
Finally, we conducted a multi-stage FWI using the second 
starting model in Figure 5(b) and the higher frequency bands 
from 0-6 Hz to 0-30 Hz of the original full wavefields and 
successfully recovered the velocity model without cycle 
skipping, depicted in Figure 5(c). 
 
In our second example, we used a highly realistic marine-
environment seismic elastic model for FWI blind tests 
designed by Chevron in 2014. 1600 shot gathers, each with 
321 traces, were generated by using an isotropic elastic 
modeling code with the free surface above, to simulate 
conventional 2D towed streamer lines with a maximum offset 
of 8000 meters.  

36 km 

 

 

 

 
Figure 6:  (a) Chevron rough starting velocity model; (b) 
conventional FWI with rough starting model; (c) improved 
starting model; (d) final FWI with improved starting model 
 
To simulate the realistic environment, the data were 
frequency-band-limited without available low frequencies 
below 4~5 Hz, full of ambient noise, surface ghosts, and 

multiples. The relations between P-velocity, and density or S-
velocity were also not deterministic.   
 
The rough starting velocity model is displayed in Figure 6(a). 
We conducted a multi-stage conventional FWI from 0-5 Hz to 
0-8 Hz using the Chevron rough starting model with results 
displayed on Figure 6(b).  Since the starting model was far 
away from the true model, there were obvious artifacts related 
to cycle skipping [that can be seen on both sides of the model 
in Figure 6(b)], also observed by Warner (2015). 
 
We created an improved starting model, displayed in Figure 
6(c), using our low-frequency regeneration method and the 
low frequencies of the regenerated first arrivals below 5 Hz 
(e.g., 0-3 Hz), which was unavailable in the original datasets. 
 
We conducted a final multi-stage FWI using the improved 
starting model from Figure 6(c) and the full wavefields of the 
original data (from 0-5Hz till 0-23 Hz), where we acquired a 
satisfactory high-resolution result, displayed in Figure 6(d), 
and is comparable to the results shown by Warner (2015). 
 
Conclusions  
 
In this paper, to avoid cycle skipping issues in FWI, the low-
frequency regeneration method is proposed to convert the 
travel-time information of the first breaks into the low-
frequency phase information in the regenerated first arrivals. 
Using the low frequencies of the regenerated data, FWI can 
reconstruct the low-wavenumber components of the 
subsurface velocity model, which is a better starting model for 
subsequent FWI updates using the original band-limited input 
data.  
 
Since the regenerated first arrivals are actually synthetic data 
with the known wavelet, full frequency band, and free of 
noise, the method is robust and stable, similar to FATT, but 
without the ray-tracing theory’s limitation. Most importantly, 
before the inversion, QC work can be easily done on the 
estimated time shifts, by comparing the original and 
regenerated first arrivals shot by shot. Finally, without 
complicated theory, only one conventional LS-FWI algorithm 
is needed for the whole process of starting-model building, 
and final high-resolution velocity reconstruction.   
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