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SUMMARY

We discuss a simple, compact approach to deriving ray tracing
equations in transversely isotropic media. The general equ-
ations derived here are given in terms of the ray slowness vec-
tor and the direction of the axis of symmetry of the medium,
which can change orientation depending on location. The stan-
dard Thomsen parameters are used instead of stress-energy
tensor components, thus allowing for easy connection with ex-
perimentally relevant quantities. The TTI results can easily be
simplified to the VTI and HTI cases (corresponding to partic-
ular orientations of the symmetry axis). Both weak and strong
anisotropy are considered. The accuracy of our formulas is
verified by comparing traveltimes with 2-way wave equation
numerical results.

INTRODUCTION

Ray tracing is an essential tool for many modern imaging al-
gorithms (Kirchhoff and Beam migration) and velocity update
methods (tomography). Ray tracing equations in isotropic me-
dia are well understood and documented. However, taking into
account anisotropic effects (due to cracks and layers of various
strata in the geological model) has become quite important for
modern seismological applications. In this paper we present a
compact system of equations applicable for anisotropic media
with transverse symmetry (which, depending on the direction
of the symmetry axis, goes under the name of VTI for vertical,
HTI for horizontal, or TTI for tilted transverse isotropy).

The general theory of ray tracing in heterogenous anisotropic
media is discussed in Cerveny (2001). Thomsen (1986) defines
anisotropic parameters relevant to practical use and derives re-
sults for phase and group velocity for transversely isotropic
media. Sena (1991) (see also Dong et al. (2000)) present ex-
plicit results for velocity and traveltimes in HTI media, with
azimuth-oriented axis of symmetry. The standard ray tracing
equations for a medium with no particular symmetry involve
evaluating up to 81 terms in a single equation, which is quite
expensive numerically. Symmetries in the medium, or using
the weak anisotropy approximation, will reduce the complex-
ity of the equations involved and speed up the computational
process. Psencik and Farra (2005) (also see Dehghan et al.
(2005)) introduce first order ray-tracing (FORT) equations for
a general anisotropic medium, applicable for weak anisotropy
values. They also present explicit FORT equations for Or-
thorhombic, HTI oriented along the X axis, and VTI media.

Here we extend these results for transversely tilted isotropic
(TTI) media to large values of anisotropic parameters. We de-
rive a relatively simple and elegant system of equations that
accommodates varying velocity, anisotropic parameters, and
changes in the orientation of the symmetry axis. We also give
the simplified results applicable for VTI and HTI media with

weak anisotropy.

RAY TRACING EQUATIONS

Following Cerveny (2001), the ray tracing equations can be
written in terms of the eigenvaluesG(p,x) of the Christoffel
matrix Γ :

dxi

dt
=

1
2

∂G(p,x)
∂ pi

;
dpi

dt
= −

1
2

∂G(p,x)
∂xi

. (1)

Herexi are the coordinates of a point on the ray, andpi are the
components of the slowness vector (pi = ni/v) along the ray
at that point. In the above equations,xi and pi are treated as
independent variables.

The Christoffel matrix components are given in terms of the
elastic stress tensor

Γi j(x, p) = ci jkl(x)p j pl ,

and the functionsG are solutions of the eigenvalue equation

det(Γi j −G(x, p)δi j) = 0 . (2)

For a transversely isotropic medium, the non-zero components
of the stress tensor in a coordinate system with the symmetry
axis in the z direction are (following the Voight notation and
Thomsen (1986)):

c1111= c2222= C11 , c3333= C33 ,

c1122= C11−2C66 , c1133= c2233= C13

c2323= c1313= C44 , c1212= C66 (3)

In terms of the standard weak anisotropy Thomsen parameters:

C33 = ρv2
o , C11 = ρv2

o(1+2ε) , C13 = ρv2
o

√

1+2δ , (4)

wherevo is the p-wave velocity along the symmetry axis. In
the pseudoacoustic approximation we can setC44 = C66 = 0.

The eigenvalue equation (2) has three solutions forG(p), the
largest one corresponding to the (pseudo) p-wave propagation,
and the other two corresponding to shear waves modes. We
will discuss the p-wave propagation in the following, since the
treatment of shear waves is quite similar.

VTI in the weak anisotropy limit

In the limit of weak anisotropy, the eigenvalue equation for the
p-wave then becomes:

G(pi,x) = v2
o

[

p2 +2δ (x)
p2

z p2
r

p2 +2ε(x)
p4

r

p2

]

, (5)

with p2
r = p2

x + p2
y the radial component of the slowness. In

terms of the angleθ between the vertical (symmetry) axis and
the slowness vector (nz = cosθ ):

G(pi,x) = v2
o p2

(

1+2δ cos2 θ sin2 θ +2ε sin4 θ
)

= v2
o p2

(

1−2η cos2 θ sin2 θ +2ε sin2 θ
)

(6)
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with η = ε − δ . The equationG(p,x) = 1 will give us the
magnitude of the phase velocityv as a function of the VTI
medium parametersv0,ε,δ , and the angleθ .

To compute the change in coordinates along the ray (left hand
equation in 1) we have to take the derivation ofG with respect
to pi variables, while thex variables are kept constant (that is,
thev0(x),ε(x) andδ (x) functions will be kept constant). Note
that the eigenvaluesG are second order homogenous functions
in the p variables; this means that they can be written in the
generic form:

G(pi,x) = v2
0p2g(sin2 θ ,x) ;

therefore,

1

2v2
0

∂G(p,x)
∂ pi

= pig(θ ,x)+
p2

2
dg(θ ,x)

d sin2 θ
∂ sin2 θ

∂ pi
.

With sin2 θ = (p2
x + p2

y)/p2:

p2

2
∂ sin2 θ

∂ pz
= −pz sin2 θ ;

p2

2
∂ sin2 θ
∂ px,y

= px,y cos2 θ . (7)

The equations for ray coordinates change in weakly anisotropic
VTI media become :

dz
dt

= pzv
2
0(1−2η sin4 θ)

d(x,y)
dt

= px,yv2
0(1+2ε −2η cos4 θ) . (8)

Conversely, to compute the change in slowness vector along
the ray, we keep thep variables (thereforeθ ) constant in the
right hand equation (1). Then, we have

−1
p2

dpi

dt
= vo∇v0 g(θ)+ v2

o sin2 θ
(

∇ε −∇η cos2 θ
)

, (9)

or, if instead of anisotropic parameterε one uses the horizontal
velocity vh(x) = v0(x)

√

1+2ε(x) :

−
1
p2

d pi

dt
= vo∇vo cos2 θ(1−2η sin2 θ)−

v2
o∇η sin2 θ cos2 θ + vh∇vh sin2 θ . (10)

TTI in the weak anisotropy limit

Transversely tilted anisotropy is esentially VTI along an arbi-
trary symmetry axis, whose orientation may vary in space. Let
us assume the direction of the new symmetry axis is given by a
new vector fieldk(x) (of unit magnitudek2 = 1). One can then
straightforwardly generalize the eigenvalue equation (5) by re-
placing the the slowness componentpz with the projection on
the new symmetry axispk:

G(pi,x) = v2
o p2

[

1+2δ (x)
(pk)2(p2− (pk)2)

p4

+2ε(x)
(p2− (pk)2)2

p4

]

, (11)

(see, for example, Eq. 24 in Dehghan et al. (2005)). Expressed
in terms of the angle between the slowness vector and the sym-
metry axis cosθ = pk/p, equations 6 stay unchanged, the dif-
ference in the TTI case being that the angleθ is dependent on
the spatial locationx.

To compute the change in coordinates along the ray, the equiv-
alent of Eqs. (7) are

p2

2
∂ sin2 θ

∂ pi
=

−p2

2
∂ cos2 θ

∂ pi
=

−p2

2
∂

∂ pi

(pk)2

p2

= −pk

(

ki − pi
pk

p2

)

= −pcosθ
(

ki −cosθ
pi

p

)

. (12)

This result reduces to Eqs. (7) if we setk = (0,0,1) for the
case of VTI anisotropy.

By evaluating the derivatives, one then obtains:

dxi

dt
= v2

0

[

pi −2η(pk)

(

ki −2ki
(pk)2

p2 + pi
(pk)3

p4

)

+ 2ε(pi − ki(pk))] . (13)

The change in slowness vector along the ray is obtained by
adding to Eq. (9) terms due to changes in the orientation of the
symmetry axis:

−1
p2

dpi

dt
= vo∇v0 g(θ)+ v2

o sin2 θ
(

∇ε −∇η cos2 θ
)

+v2
0 (ε −η cos(2θ))∇(sin2 θ) , (14)

with

∂ sin2 θ
∂xi

= −
∂

∂xi

(pk)2

p2 = −2p j
pk

p2

∂k j

∂xi
. (15)

Note however that usually the axis of symmetry changes direc-
tion rather slowly, so the derivatives∂k j/∂xi can be expected
to be very small numerically. Therefore for practical purposes
one can usually neglect the second line terms in Eq. (14) and
use Eqs. (9, 10) for the TTI case too. Note that these terms
are also typically neglected in efficient numerical implementa-
tions of the two-way wave equations for TTI media (see, for
example Macesanu (2011)).

HTI anisotropy

For reference, we present formulas specific to the case of HTI
anisotropy (where the symmetry axis lies in thexy plane). The
ray equations can then be derived from the general TTI case
by setting the vectork = (kx,ky,0) = (cosφ ,sinφ ,0), with the
angleφ constant. One then obtains

dz
dt

= v2
0pz

(

1+2ε −2η cos4 θ
)

d(x,y)
dt

= v2
0

[

px,y −2η cosθ(pkx,y cos2θ+

px,y cos3 θ)+2ε(px,y − pkx,y cosθ)
]

. (16)

For the components ofp, Eqs. (9, 10) still apply (whereθ is
the angle between the slowness vectorp and the HTI symmetry
axis, andvh should be interpreted as the vertical velocity rather
than horizontal one).
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STRONG ANISOTROPY EQUATIONS

For values of the anisotropy parameters greater than some thresh-
old (typically about 0.2), the weak anisotropy approximation
may not be accurate enough. In this case, one can use the ex-
act result for the p-wave eigenvalue of the Christoffel matrix.
Following the notations (Eqs. 10) in Thomsen (1986), one can
write the result as

G(θ ,x) = v2
0p2g(θ) = v2

0p2
(

1+ ε sin2 θ +D∗(θ)
)

, (17)

with

D∗(θ) =
1
2

[(

(

1−
v2

s

v2
o

)2

+4δ ∗ sin2 θ cos2 θ

+4ε
(

1−
v2

s

v2
o

+ ε
)

sin4 θ
)1/2

−1

]

(18)

with vs =
√

C44/ρ the shear wave velocity in the direction of
the symmetry axis (for both shear modes), and

δ ∗ =

(

v2
s

v2
o

+
√

1+2δ
)2

+

(

1−
v2

s

v2
o

)(

1−
v2

s

v2
o

+ ε
)

(here we keep the definition
√

1+2δ = C13/C33 used in the
weak anisotropy case).

The ray equations can be derived straightforwardly :

1

v2
0

dxi

dt
= pig(θ)+

p2

2
∂ sin2 θ

∂ pi

(

ε +
∂D∗(θ)

∂ sin2 θ

)

(19)

where the derivatives of the sin2 θ quantity with respect to the
slowness components are given in Eq. (7) for the VTI case and
in Eq. (12) for HTI or the general TTI case. Also

−1
p2

dpi

dt
= vo∇v0 g(θ)+

v2
o

2

(

sin2 θ∇ε +
∂D∗(θ)

∂xi

)

+
v2

0

2

(

ε +
∂D∗(θ)

∂ sin2 θ

)

∇(sin2 θ) (20)

where again the second line terms can usually be neglected for
the TTI case (and are zero for the VTI and HTI cases).

To write down the derivatives of theD∗ function, it is conve-
nient to introduce the notations :

ρs = 1−
v2

s

v2
o

; D∗(θ) =
1
2

(

√

F(θ)−1
)

.

Then
∂D∗(θ)

∂ sin2 θ
=

1
√

F(θ)

[

δ ∗ cos(2θ)+2ε(ρs + ε)sin2 θ
]

∂D∗(θ)

∂xi
=

1
√

F(θ)

[(ρs

2
+ ε sin4 θ

)

∇ρs+ (21)

sin2 θ cos2 θ∇δ ∗ +sin4 θ(ρs +2ε)∇ε
]

.

The above results are applicable for the tracing of rays asso-
ciated with pseudo-pressure waves. For shear waves, one can
use the other two eigenvalue functions:

GSV (θ ,x) = v2
0p2

(

(vs/v0)
2 + ε sin2 θ −D∗(θ)

)

GHV (θ ,x) = v2
s p2

(

1+2γ sin2 θ
)

. (22)

NUMERICAL RESULTS

To verify the accuracy (and correctness) of our equations, we
run some numerical tests in models with moderate anisotropy.
The first test is run in an homogenous VTI model, with ap-
velocity v0 = 3000m/s,vs = 0, and the anisotropic parameters
ε = 0.2 andδ = 0.1. We perform ray tracing starting from a
surface point, and calculate the traveltimes from the shot lo-
cation to points on a vertical line situated 3Km from the shot.
To evaluate the accuracy of the equations, we compare the re-
sult with traveltimes evaluated using a 2-way wave equation
for anisotropic media (Duveneck et al. (2008)). Note that the
wave equation results are computed in the pseudo-acousic ap-
proximation (vs = 0), however, the resulting traveltimes are
exact up to numerical errors (that is, there is no approximation
related to the magnitude of the anisotropic parameters in the
equations being used).

 0.998

 0.999

 1

 1.001

 1.002

 1.003

 1.004

 1.005

 500  1000  1500  2000  2500  3000  3500  4000  4500

T
T

 r
at

io

depth - z (m)

Figure 1: Traveltime ratios for strong (solid line) and weak
anisotropy approximation (dashed line) in a homogenous VTI
model.

In Fig. 1 we plot the ratioRray/wave of the traveltimes ob-
tained from ray-tracing versus the traveltimes obtained from
wave equation modeling. The solid line corresponds to rays
traced with the exact equations (19, 20); note that in this case
the two traveltimes agree with an error margin< 0.01%. The
dashed line corresponds to the case where the rays are traced
using the weak anisotropy approximation (Eqs. 8, 9); the dif-
ference from unit in this ratio is due to approximation being
used. We see from this plot that the error due to the use of the
weak approximation in ray-tracing equations can be quite sig-
nificant in this case (since relative errors of order 0.1% in trav-
eltime translate into absolute errors of order miliseconds for
the times associated with seismic events). These errors seem
roughly consistent with those found by Dehghan et al. (2005),
which report a weak approximation error of about 0.08% for
values of the anisotropy parameters equal to half of the ones
used here.

One also notes from Fig. 1 that the greatest errors associated
with the weak anisotropy approximation appear at angles close
to 60 deg (the relation between depthz in Fig 1. and angle is
tanθ ′ = 3000/z – note that this is the ray angle rather than the
phase angleθ employed in the previous section). The reason
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for this behaviour is that anisotropic effects generally increase
with angles (indeed, atθ = 0 – along the symmetry axis – the
propagation is isotropic). However, at right angle with respect
to the symmetry axis the weak approximation becomes exact;
one can check this by looking at the weak approximation for
the functionD∗ in Eq. (18):

D∗
weak(θ) = −2η sin2 θ cos2 θ + ε sin4 θ → D∗(θ) ,

in the limit whereθ → 90deg.
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Figure 2: Traveltime ratios for strong (solid line) and weak
anisotropy approximation (dashed line) in a v(z) model.

The second model used for testing is av(z) model, where
all parameters vary with depth only. We takev0(z) = 2+
0.5z Km/s,ε = 0.1z,δ = 0.05z (with depth measured in Km),
so that the average of the parameters over the first 4 Km of
depth are the same as in the first test. The ratios of the ray-
tracing traveltimes and wave equation traveltimes for this model
are plotted in Fig. 2 (for the weak approximation and the ex-
act formulas). Again, we note good agreement between the
ray-tracing traveltimes and the wave equation ones when using
the exact equations (19, 20), and errors of order 0.1% for the
weak approximation case. Note that compared with the pre-
vious test, the errors in this model are smaller shallow (since
the magnitude of the anisotropic parameters is smaller), and
somewhat larger at depths greater than 4 Km.

CONCLUSIONS

We have describeded here a compact system of equations for
ray-tracing in a transversely isotropic medium. These equa-
tions improve the efficiency of numerical implementation of
ray-tracing algorithms, compared to methods where the ele-
ments of the stress-energy tensor are evaluated individually.
We give simpler forms of the equations suitable for weak ani-
sotropy approximation in VTI and HTI media. However, the
general results we present are valid for arbitrarily strong ani-
sotropy, and extend previous published work valid in the weak
anisotropy limit.

We perform numerical comparison between traveltimes eval-
uated by ray-tracing, and by using a 2-way wave equation in

VTI media. We find very good agreement between the two sets
of traveltimes when the full (exact) equations are used for ray
tracing. When the weak approximation is used, we find errors
of order 0.1% in traveltime evaluation for anisotropic parame-
ters of order 10%. This indicates that using the exact equations
is reccommended if one desires good accuracy in models with
mild anisotropy.
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